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The lattice Boltzmann method is modified to allow the simulation of non-Newtonian shear de-
pendent viscosity models. Casson and Carreau-Yasuda non-Newtonian blood viscosity models are
implemented and are used to compare two dimensional Newtonian and non-Newtonian flows in the
context of simple steady flow and oscillatory flow in straight and curved pipe geometries. It is
found that compared to analogous Newtonian flows, both the Casson and Carreau-Yasuda flows
exhibit significant differences in the steady flow situation. In the straight pipe oscillatory flows,
both models exhibit differences in velocity and shear, with the largest differences occurring at low
Reynold’s and Womersley numbers. Larger differences occur for the Casson model. In the curved
pipe Carreau-Yasuda model moderate differences are observed in the velocities in the central regions
of the geometries, and the largest shear rate differences are observed near the geometry walls. These
differences may be important for the study of atherosclerotic progression.

PACS numbers: 47.11.Qr, 47.50.-d

I. INTRODUCTION

Atherosclerotic cardiovascular disease is a leading
cause of morbidity in the industrialised world [1, 2].
There is a body of evidence that suggests a correlation
between atherosclerosis, regions of low blood-flow veloc-
ity, rotational flow, low and oscillatory shear stress near
the walls of arteries [3-7]. The study of blood flow and
it’s hemodynamical properties can therefore lead to a
greater understanding of atherosclerosis and its depen-
dence on flow parameters. However, accurate measure-
ments of quantities of interest, such as shear stress, are
difficult to make in vivo, thus numerical simulation be-
comes a valuable investigative tool.

The lattice Boltzmann method (LBM) [8-10] has been
developed as an alternative method for modelling fluid
flows. The LBM uses a simplified kinetic equation to
simulate fluid flows and has been applied to many gen-
eral problems including turbulence [12], magnetohydro-
dynamics [13] and multiphase flows [14], as well as in
areas relevant to blood flow simulation such as in flows
with elastic and moving boundaries [15], steady and pul-
sating flow [16], particle suspensions [17] and flows with
complex boundaries [18].

The LBM has also been applied to the simulation of
blood flow [19-30] and has been shown to be suitable for
modelling a number of features which are important to
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arterial hemodynamics. In general, blood is assumed to
be a Newtonian fluid. It is held that this assumption is an
acceptable approximation for larger vessels, such as the
carotid artery [31, 32]. However, given the dependence
of atherosclerosis on near wall shear, it needs to be asked
whether this assumption remains valid for applications
studying atherosclerotic progression.

Alternative methods are available for simulating non-
Newtonian fluids [33-37], however LBM modelling of
non-Newtonian blood flow is currently an active area of
research due to the advantageous properties of the LBM,
which include the local nature of the algorithm, which
allows easy calculation of the velocity and shear, suit-
ability to parallel implementation, and the availability
of easily implemented boundary schemes which allow for
the modelling of complex geometries.

Artoli et al. have studied the properties of non-
Newtonian blood flow using LBM techniques under a
limited number of parameter conditions [38-40]. This
paper will examine the Newtonian blood assumption for
a range of parameter conditions.

In this paper, a non-Newtonian flow model using the
LBM will be presented in Section IT A. It will be used to
simulate steady (Section ITI A) and oscillatory flows in
straight (section III B) and curved (Section III C) two
dimensional pipes. The non-Newtonian properties of the
fluid will be modelled using the Casson [34] and Carreau-
Yasuda (C-Y) [41] models described in section II B. The
results will be compared to analogous Newtonian flows
in order to characterise the differences.
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FIG. 1: The D2Q9 lattice. The black circle is the node, and the lines are the link directions, numbered from 1 to 8.

II. THEORETICAL BACKGROUND

A. The Lattice Boltzmann Method

The LBM uses a modified molecular dynamics ap-
proach to model fluid flow [8]. In the LBM, particle
distribution functions, f;(x,t) at point & and time ¢, are
confined to move synchronously on a regular lattice. The
distribution functions interact on the lattice in a way that
conserves mass and momentum and ensures the fluid is
isotropic and Galilean invariant. Here, i labels the lattice
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and 2; is the collision operator. The fluid density p and
velocity u can be calculated directly from the distribution
functions at each node by

p=Zfi PU=Zfiei-

It is assumed that the distribution functions f; can be
expanded formally around a local equilibrium distribu-
tion such that

3)

and

fi= " +efi™, (4)

where ¢ is a small parameter often taken to be the Knud-
son number, f;? are equilibrium distribution function
and f;*°? are non-equilibrium distributions functions. f;?
is selected such that

link the distribution function is on. (i = 8) for

the D2Q9 lattice, shown in Figure 1

The evolution of the distribution functions on the lat-
tice is governed by the discrete Boltzmann equation [8-
11]
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where for the D2Q9 lattice, see Figure 1,
(1=0),
) (i=1,2,3,4), 2)
(3G-1+1%)), (1=56,7.8),
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and (5)
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and it is assumed that the non-equilibrium distribution
functions, f*°?, can be further expanded as

frea = £ 4 e 1 4 o(e?), (6)

where

S =3 Pei=0, k=12 (7)

The collision operator €2; is given by the Bhatnagar-
Gross-Krook approximation as [8-10, 13, 42, 43]
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where 7 is the relaxation time. The equilibrium form of
the distribution function in two dimensions for the D2Q9
lattice is given by [9, 11]
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where wg = 4/9, w; = 1/9 for i = 1,2,3,4 and w; = 1/36
for 4 = 5,6,7,8. The relaxation time 7 is related to the
viscosity i by
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The LBM reproduces the Navier stokes equation in the
nearly incompressible limit and is second order accurate
[8-10].
The stress tensor for an incompressible fluid with pres-
sure p is given by

Oap = _p(saﬁ + 2775a67 (11)

where d,3 is the Kronecker delta and

1
Sap = 5(Vpta + Vaup) (12)

is the strain rate tensor.
It can be shown [44] that S, can be calculated locally
at each node in the LBM as

3
Saﬂ = _E Z fi(l)emew. (13)

The fi(l) terms are calculated from the non-equilibrium
part of the distribution function which is usually mea-
sured during collision. Thus calculating shear in this
manner is efficient since it removes the need to calcu-
late derivatives of the velocity. Further, the shear is
calculated locally, which is particularly advantageous if
the LBM is being implemented in parallel. This method
for implementing shear dependent non-Newtonian flows
has been shown to be second order accurate for a simple
power law flow [22].

B. Non-Newtonian fluid models

Two commonly used non-Newtonian blood models are
the Casson model [34] and the Carreau-Yasuda model
[41]. In both models we have taken the density of blood
to be p=1x 10%kg m—3.

In the following discussion we denote the second in-
variant of the strain rate tensor as

l
Dir= ) SapSap, (14)
a,f=1

where [ = 2 in the case of a two dimensional model. The
shear rate is then defined as

¥=2vDu (15)

1. Casson model

The Casson model is broadly used to describe the shear
thinning behaviour of blood. In this model the apparent
viscosity is given by [31, 34, 45, 46, 49)

) =1 c )V i
1(1) = 5 (ko(d) + ka(0VA) (16)

where ko(c) and k;(c) are functions of the hematocrit ¢
given by [34]

ko(c) = —22 (kl(c)—1> and,

ab—1

Here, 1) is the plasma viscosity, a, b and § are constant
parameters. ko(c) and kj(c) are determined by fitting
equation (16) to physical viscometric data. In this paper
parameter values of ko(c) = 0.1937 (Pa)z and ky(c) =
0.055 (Pa - s)? were used, obtained from Perktold et al.
(1991) [34].

The Casson model fits empirical data quite well for
shear rates of ¥ > 1 s~ ! [34], however, we note that
%ii% (%) = o0, and thus this model is undefined at zero
shear rate. Both kg and k; are expressed in terms of
hematocrit, a measurable physical quantity and them-
selves have physical meaning. k3 can be interpreted as
the yield stress for blood, and we note that ﬁ_yli_}rr;o (%) =

(17)
k‘l (C)
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k?, a limiting asymptotic viscosity.

Equation (16) can be dimensionlessly scaled and
the following dimensionless number analogous to the
Reynold’s number can be defined

ugLp

Reg = 2

(18)

where ug and L are the peak velocity and characteristic
length of the system respectively.



2. Carreau-Yasuda model

The Carreau-Yasuda model for the shear thinning be-
haviour of blood is also commonly used in hemodynam-
ical simulations [31, 41, 46]. In this model the apparent
viscosity is given by

n—1

N(¥) = Moo + (M0 — Meo) (L + (AY)*) =, (19)

where a, n and A are empirically determined constant
parameters. The parameters a and n are dimensionless,
the parameter A has units of s.

The main advantage of the Carreau-Yasuda model over
the Casson model is that it is continuous for all 4 > 0.
For blood n < 1, thus we note that _li_% n(¥) = mo and

gl

lim 7(¥) = 7Neo, indicating that at high shear rates,
4—00

the fluid acts like a Newtonian fluid with viscosity 7o,
whereas at low shear rates, the fluid acts like a Newto-
nian fluid with viscosity 79. The parameters a, n and
A control how the fluid behaves in the non-Newtonian
regime between these two asymptotic viscosities. The
continuity of this model at low shear rates allows for an
easier implementation in numerical modelling schemes.

In this paper parameter values of 79 = 0.1600 Pa s,
Noo = 0.0035 Pa s, A =8.2 s, a = 0.64 and n = 0.2128
were used, obtained from Abraham et al. (2005) [41].
The following dimensionless number analogous to the
Reynold’s number can also be defined

L
Recy = 2P (20)
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III. RESULTS

Casson and Carreau-Yasuda flows were implemented
in the LBM through the coupling of equation (10) with
equations (16) and (19) respectively. Steady and oscil-
latory flow simulations were conducted and the results
for the non-Newtonian flows were compared to analogous
Newtonian flows. The analogous Newtonian flows were
defined as having the same pressure gradient, and vis-
cosities of n = k? for the Casson comparison and 7 = 7
for the Carreau-Yasuda comparison. Boundary condi-
tions were implemented using the extrapolation bound-
ary scheme developed by Guo et al. (2002) [18] which has
been shown to be second order accurate in both steady
and oscillatory flows [12, 18]. For the straight pipe ge-
ometries in sections A and B the pressure gradient was
implemented using a body forcing term [47]. Due to the
geometry of the pipe, 2D oscillatory flow in the curved
pipe of section C was driven by the pressure boundary
conditions given by Inamuro et al. [48].

Figure 2 shows the shear thinning behaviour of the
LBM non-Newtonian models as a function of the shear
rate compared to the constitutive equations for the C-Y,
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FIG. 2: Shear dependent viscosities for the Carreau-Yasuda
[41] (solid line) and Casson [34] (dashed line) models com-
pared to LBM viscosity behaviour.

equation (19), and Casson, equation (16), models. The
relaxation parameter 7 ranged between 0.5015 — 0.8457.
The LBM results for both models accurately model the
shear dependent viscosity, demonstrating the suitability
of the LBM for a variety of non-Newtonian flow applica-
tions.

A. Steady non-Newtonian flow

Steady non-Newtonian flow was implemented in a 2D
pipe using the Casson [34] and Carreau-Yasuda [41]
constitutive models to simulate the non-Newtonian be-
haviour of blood. Parameter values for the models were
scaled to fit the physiological data for the human carotid
artery at peak flow given in Perktold et al. [34]: uo =
065 m s 'and L=6.2x 1073 m

Three sets of parameters were used for the non-
Newtonian models. For the Casson model the param-
eters from Perktold et al. [34] were used, these param-
eters will be referred to as parameter set one PS;. For
the Carreau-Yasuda model, parameters from Abraham
et al. [41] were used (PSz2). The third set of parame-
ters (PSs) were obtained by fitting the Casson model to
the data generated from the Abraham parameters for the
Carreau-Yasuda model. The PS3 values were obtained
so that a distinction could be made between the differ-
ences caused by the use of different parameters and the
differences caused by the use of different models. This
distinction needs to be made, as the PS; values were fit-
ted to data obtained from a blood mimicking fluid [34],
whereas the PS,; were obtained from physiological mea-
surements [41]. The influence of this fact on the results
needs to be determined.

Simulations were performed in 2D rigid pipe models
of diameter L = 41 and L = 81. Scaling of parameters



was performed by assuming that the peak velocity in the
flow simulation was ug = 0.05, and this value was used
to calculate the pressure gradient G from the analytic
Newtonian solution [50].

ug (y) = % <(§>2 —y2> . YE [—gg] . (21)

For the PS; values, the following cutoff was imple-
mented, in order to avoid numerical instability at ¥ = 0

770(1); ’7 < ]-7
n(y) = (22)
nc(¥), otherwise,

where n¢ () indicates the apparent viscosity described
by the Casson model (equation (16)).

In the case of the PS3 values, the following cutoff was
imposed

_ o, Y ¥ [1e(¥) = 0,
n(y) =
nc (), otherwise,

where 79 is the asymptotic viscosity of the Carreau-
Yasuda model, see equation (19).

The simulations were run until the following conver-
gence criterion was satisfied

D llule,t) —ule,t - 1) <, (23)

where ¢ is a small number taken to be ¢ = 1 x 10~19.
The difference between the non-Newtonian and Newto-
nian velocities was calculated using

_ S lluy() — us @)
SRS SR e TR

where un(z) and uy(x) are the Newtonian and non-
Newtonian velocities respectively.

Figure 3 shows a comparison of the velocity profiles in
pipes of diameter L = 41 (crosses) and L = 81 (solid
line) at Re = 100 with the Carreau-Yasuda model imple-
mented, velocities are given in lattice units. Negligible
differences are observed. This indicates that a pipe di-
ameter of 41 lattice units gives sufficient resolution.

Figure 4 shows the results for the three parameter sets
in pipes of length L = 41 over a range of Reynold’s num-
bers. These results show that significantly different flow
profiles can be obtained depending on the models and
parameters used. Here we see that for all Reynold’s num-
bers the PS; flow shows the largest deviation. The PS3
model shows a similar trend, although with a smaller
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FIG. 3: Comparison of velocity profiles in pipes of length
L = 41 (crosses) and L = 81 (solid line) at Re = 100 with the
Carreau-Yasuda model implemented

overall difference for each Reynold’s number. The PS,
model shows smaller differences, and also has a steeper
slope than either of PS; or PS3 models, indicating that
PS; flows profiles approach their Newtonian limit at a
faster rate than the Casson models. In both cases the
differences decrease for higher Reynold’s numbers, which
is to be expected as higher velocity flows will experience
higher shear rates, causing the viscosity to approach the
Newtonian limit. The different slopes of the Casson and
C-Y flows results from the form of the equations used
to define the non-Newtonian behaviour. The similarity
between the results for the PSy and PS3 models indi-
cates that the parameters chosen for the respective mod-
els have the greatest influence on the results.

0.1

Casson PS, (Perktold et. &)
---- Carreau-YasudaPS,
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|
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FIG. 4: Differences in velocity between Newtonian and non-
Newtonian models.

Unfortunately, measuring blood viscosity is experimen-
tally difficult and can be beset by artifacts which can



lead to inaccurate interpretations and misleading conclu-
sions [51]. For a detailed discussion of the problems in-
volved, please refer to Merrill [51] and Nguyen and Boger
[52]. We note that the parameters from Perktold et al.
were obtained from a blood mimicking fluid. Perktold re-
ported no significant differences between Newtonian and
non-Newtonian flows in pulsatile flow in a carotid artery
geometry using the same parameters implemented in this
paper. The large differences exhibited in the steady flow
results presented may be due to the steady flow nature
of the simulations, and further investigation is required
to determine the influence of non-Newtonian flows in a
physiologically accurate model.

In the next section a brief description of oscillatory
flow and its implementation in the LBM shall be given.
Then non-Newtonian flow in an oscillatory flow model
will be examined, with the aim of further understanding

differences between Newtonian and non-Newtonian flows.
Flows in straight pipe will be examined.

B. Oscillatory flow: Straight pipe

2D oscillatory flow was implemented in a straight pipe
geometry with the LBM using the Casson and Carreau-
Yasuda models with the same parameters used for the
previous steady flow simulations. If we consider a 2D
oscillatory flow in a pipe of diameter L driven in the z
direction by a sinusoidally varying pressure gradient of

0
6p —p*e™t. where p* is the maximum amplitude of
z

the pressure gradient, w is the angular frequency of the
flow and ¢ is time, the analytic solution for velocity and
shear are given by [12, 53]

* cosh[-L (atia)2¥]| .
uz(y’t) = %{IZ_P [1 - cosh\[ﬁﬁ(a—i—ia)[]l ] eWt} ’ ye [_%’ %]
sinh[ L (a+ia) 2] ) (25)
o'a:y(yat) = _n% { iwpL Th\[/:}w ’ elwt} ) y e [_%7 %] :

where R denotes the real part of the expression, p is the
density and «a is the Womersley parameter [12, 32, 54]
which is defined as

we (26)

The Reynolds number for this type of flow is defined
as [12]

R65 = UO(Sp

(27)

where ¢ is the Stokes layer thickness, defined as [12]

T

o (28)

Simulations were run for a and Reg values correspond-
ing to

Q
Il

24+1, j=0,...,7

Res = 100+505. j=0,...,6,

The behaviour of the non-Newtonian flows were com-
pared to that of the corresponding Newtonian flows, i.e.
flows with viscosities of n = k? in the Casson case and
1 = N)eo in the Carreau-Yasuda case, and the same pres-
sure gradient.

All simulations were run until the following criterion
was satisfied

3 [lu(@, £T) - u(a,

where kK € N and represents the number of periods that
have been simulated. & typically ranged between 10 -
200, depending on « and Res. Here € was taken to be
e=1x10"".

Once the above criterion was reached the simulation
was run for one more period, during which a measure of
the differences for the velocity, Ay, and shear, Ag, were
calculated using the following metrics

(k= DT <e,

7

Ap(t) = NZIIUN z, Tlu_NﬁN(m 2l

Ag(t) =

llon(z,t) — ox (1) (29)
Z IIUNII ’
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FIG. 5: Ayt for a) The Casson model, b) The Carreau-Yasuda model. The letters A, B and C indicate the o and Res regions
corresponding to A) The Aorta, B) The Brachial artery, C') The Carotid artery.

where un(z,t) and ug(x,t) are the Newtonian and
non-Newtonian oscillatory velocities at time ¢, oy (2, t)
and oy (x,t) are the Newtonian and non-Newtonian o,
shear components at time ¢. 4y and &y are the peak
Newtonian velocity and shear at time ¢. Velocities were
selected at every 100" of a period and N corresponds to
the number of nodes in the pipe geometry.
The average differences were then defined as,

1
AVT = ZT_AV(t)’ and:
t n

Asr =

S As(),
t n

where ¢t € [kT, (k + 1)T] and T, is the number of time
steps included in the summation, here we use T,, = 100.
The form of the metrics for Ay and Agr were chosen
over that used in equation (24) due to its insensitivity
to the shape of the velocity and shear profiles. This is
an important property, as the shear profiles in particu-
lar, exhibit a large variation in shape depending on the
Reynold’s and a numbers.

The 0, component of the shear was used because from
equation (25) we see that the z-component of the solution
uz(y,t) for this type of flow only depends on y, and the
y component uy(x,y,t) = 0, thus from equation (11),
Ogz = Oyy = —Pdag are constant and variations in the
shear rate 4 (equation (15)) are solely determined by o,.

Figures 5 a) and b) show the velocity results for the
Casson and Carreau-Yasuda (C-Y) models respectively.
The letters A, B and C and their corresponding circles in-
dicate the general o and Re; regions of the aorta, brachial

and carotid arteries respectively. Table I shows the pa-
rameters used to determine these arterial regions.

TABLE I: a and Res values for the aorta, carotid and brachial
arteries.

Artery Uo Diameter @ Res
(m s_l) (m) (approx.) (approx.)

Aorta © 1.09 2.54 x 1072 15 300

Brachial ° 1.07 3.90 x 1072 3 300

Carotid © 0.65 6.20 x 1073 5 200

%Haugen et al. [57]
bStoner et al. [56]
“Perktold et al. [34]

In both figures, the maximum Ay are seen to oc-
cur for low a and low Res. Higher differences persist
for o numbers between 1-5, although this tapers off for
the higher Res in the C-Y case. For the higher o num-
bers Ay decreases with increasing Res. The graphs
support the assertion that for larger arteries (Higher «
and Rey) the assumption of Newtonian viscosity is a good
first approximation [31, 32, 55], particularly for the aorta.
However, the carotid artery (C) exists in a region of rel-
atively moderate difference and the brachial artery (B)
lies quite close to a region of higher difference. Thus we
must question how relevant this assumption is for each
of these arteries.

The scale of the errors differ greatly between the Cas-
son and C-Y models. The Casson model shows a peak
difference of 0.21, whereas the C-Y model exhibits a peak
difference of 0.065, thus differing by about a factor of 3.
This is also true for the minimum difference values. This
large difference can be attributed directly to the differ-
ent viscosity curves generated by the chosen parameters.
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FIG. 6: Agr for a) The Casson model, b) The Carreau-Yasuda model. The letters A, B and C indicate the a and Re; regions
corresponding to A) The Aorta, B) The Brachial artery, C') The Carotid artery.

The C-Y model also shows more persistent higher errors
for low Res flows.

We also notice a large “bulge” present between @ = 5
- 9 and for Res > 200, this bulge is most prominent in
Figure 5 b) for the C-Y model. This corresponds to the
intermediate « region in which the velocity profile is be-
tween the characteristic parabolic (low «) and step like
(large ) oscillatory profiles. The intermediate profiles
exhibit tendencies of both extremes, but they notably
have a dip near the center, which creates a “valley” be-
tween two “hills”. Non-Newtonian flows tend to flatten
the velocity profile, thus in these intermediate o regions,
the valleys and hills are flattened, resulting in a more
persistent difference over that range.

Figures 6 a) and b) show the shear results for the
Casson and Carreau-Yasuda (C-Y) models respectively.
Both these figures exhibit similar trends. In both cases
Agr decreases with increasing Re, for all a. For each Re
we note that Agr first increases with «, until it peaks.
For the Casson model this peak is observed at approxi-
mately a = 3, for the C-Y model the peak is observed
at approximately a = 5. Agr decreases after this peak
in all cases. These regions correspond to the a regions
with high Ay7. For the Aorta, Agr is small in both
cases, but both the Brachial and Carotid arteries reside
in regions of relatively higher difference.

The scale of the errors differ significantly between the
two models. The Casson model shows a peak difference
of 0.16, the C-Y model shows a corresponding peak dif-
ference of 0.05. This is a factor of 3 difference, similar to
that seen in the corresponding velocity differences (Fig-
ure 5). Higher shear differences occur across a broader
range of a in the C-Y model, A bulge similar to that seen
in the velocity error graph (Figure 5) is also observed in
the C-Y shear error results, for similar reasons.

As Ayt and Agr are averaged over T', Figures 5 and
6 give us no information as to how the differences vary
over the oscillation period. We would also like to know
how the shear varies both over the period and between
Newtonian and non-Newtonian flows.

1. Differences over a period

In order to observe what differences, if any, occur in the
behaviour of the flows over T in a physiologically relevant
manner, three specific example were been chosen. The
Aorta, Brachial and Carotid arteries represent differing
a and Res numbers, see Table I. Table IT shows the
Avy7 and Agr values associated with these arteries for
the Casson and C-Y models.

TABLE II: Ayr and Agr values for Aorta, Brachial and
Carotid arteries.

Model
Artery Casson Carreau-Yasuda
Avr Ast Avr Ast
Aorta 0.0197 0.0460 0.0080 0.0139
Brachial 0.0700 0.0990 0.0154 0.0216
Carotid 0.0538 0.1230 0.0144 0.0333

In this section, the velocity and shear profiles corre-
sponding to the Carotid artery will be examined. Figures
7 a) - d) shows comparisons between the Newtonian (solid
lines) and Casson non-Newtonian (dotted lines) velocity
and shear profiles for the o and Re; corresponding to the
Carotid artery. Profiles corresponding to times of peak
and low velocity were chosen to contrast the fluid behav-
iors at different times during the oscillation. Figures 7 a)
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FIG. 7: Comparison of Newtonian (solid lines) and Casson non-Newtonian model (dotted lines) velocity, shear and viscosity
(dot-dashed lines) profiles corresponding to the carotid artery. Profiles taken at a - b) 0.087 and ¢ - d) 0.33T.

- b) show these profile at time ¢ = 0.087", Figures 7 a) -
b) show these profile at time ¢ = 0.337.

We note that for the Casson non-Newtonian model
the velocity profile is flatter across the central region
of the artery compared with the corresponding Newto-
nian model. The same flattening was observed near the
edges of the profile at later times in the period (data
not shown). Similar flattening was also observed in both
the Aorta and Brachial artery cases. At time ¢ = 0.087T
the non-Newtonian profile exhibits a larger central ve-
locity (0.73 m s~1) than the corresponding Newtonian
profile (0.70 m s~'). This phenomenon is due to the
general flattening characteristic of shear thinning non-
Newtonian flows, and the particular shape of the profile
which is characteristic of this particular & number. After
t = 0.337, the non-Newtonian profile velocity is smaller

in magnitude than the corresponding Newtonian flow.

Differences in the velocity profiles extend across all the
pipe due to the distinct flattening in the non-Newtonian
profile. These differences are largest at the peak velocity
(4.4%) and lowest velocity (4.3%) timesteps.

Figures 7 b) and d) show comparisons between the
Newtonian (solid lines) and Casson non-Newtonian (dot-
ted lines) shear profiles. Differences of up to 10.5% be-
tween the Newtonian and Casson non-Newtonian pro-
file are observed, with the predicted shears of the non-
Newtonian profile being larger than the corresponding
Newtonian shear. The largest differences extend across
most of the pipe for the majority the period (data not
shown), with the differences near the edge of the pipe be-
coming smaller at times corresponding to smaller veloci-
ties. The non-Newtonian shear is observed to be smaller
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than the corresponding Newtonian shear near peaks in
the apparent viscosity, Figure 7 d).

The non-Newtonian viscosity also exhibits a persistent
central peak for the majority of the period and the de-
velopment of two smaller peaks near the edge of the pipe
at times of low velocity, Figure 7 d).

Figures 8 a) - d) shows comparisons between the New-
tonian and C-Y non-Newtonian velocity profiles for the
a and Res corresponding to the Carotid artery. It is ob-
served that the profiles match quite closely. The largest
differences (2.2%) occur at the peak velocity, where the
non-Newtonian profile flattens in a manner similar to
that observed in the corresponding Casson flow. Slight
flattening around the velocity minima at ¢ = 0.337 is also
observed, Figure 8 d). The predicted velocities in this
case are higher than those observed in the corresponding

Casson case, but the differences between the Newtonian
and non-Newtonian profiles are much smaller.

Figures 8 b) and f) show comparisons between shear
profiles for the Newtonian and C-Y models and the ap-
parent viscosity profile predicted by the C-Y model. We
observe that the shear profiles match closely. In gen-
eral the C-Y non-Newtonian shear is higher than the
corresponding Newtonian shear. The largest differences
(3.5%) are confined to the inner regions of the pipe, with
smaller differences seen near the edge only during a rel-
atively small proportion of the period (data not shown).
Once again, the differences between Newtonian and non-
Newtonian profiles are much smaller than for the corre-
sponding Casson profiles.

The apparent viscosity profile exhibits similar be-
haviour to the corresponding Casson case, with a central



peak that grows for the majority of the timespan exam-
ined (data not shown). The initial peak at ¢ = 0.08T
has a broader base (0.4x diameter) compared to the cor-
responding Casson peak (0.25x diameter). The satellite
peaks in the C-Y viscosity are smaller in magnitude nar-
rower than the corresponding Casson peaks. The magni-
tude of the largest peak was larger that the corresponding
Casson peak (data not shown).
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FIG. 9: Newtonian and non-Newtonian near-wall shears over
one period

Figure 9 shows the near-wall shear comparison taken
at half a grid-length (0.012L) from the wall in the New-
tonian, Carreau-Yasuda and Casson oscillatory flows cor-
responding to the Carotid artery. The sinusoidal shear
curve for the C-Y model matches that reported by Artoli
et al. [39]. The non-Newtonian shears exhibit greater
magnitudes compared to the Newtonian flow over the
majority of the period for both the C-Y and Casson mod-
els, with the Casson in general showing the greatest dif-
ference. Both non-Newtonian models are also slightly
phase shifted relative to the Newtonian curve. In the
next section this analysis will be extended to a curved
pipe geometry in order to observe the effects that com-
plex geometries have on the flows.

C. Oscillatory flow: Curved pipe

2D oscillatory flow was implemented in the curved pipe
geometry shown in figure 10 with the Carreau-Yasuda
parameters used for the previous simulations.

The Reynold’s number was defined from equation (20)
where in this case ug was calculated from the pressure
gradient using equation (25) as the peak velocity in a
straight pipe. This ug may differ from the actual peak

FIG. 10: Curved pipe geometry. A, B, C and D represent
lines across which velocity and shear rate profiles were taken.

velocity on the curved geometry. The width of the pipe
was taken to be R —r = 40 lattice units and the parame-
ters were scaled accordingly. The a number was defined
in the usual manner. A Reynold’s number of Re = 100
and Womersley number of a = 1 were used in this curved
pipe simulation.

The simulations were run until the following conver-
gence criterion was satisfied

% > llu(z, £T) — u(z, (k= DT)|| <,

where € was e = 1 x 107® , N was the number of fluid
nodes in the geometry. & in this case was around 40
The velocity difference was defined according to equa-
tion (29) and the shear rate difference, A5, was defined
analogously by the equation

Axy(t) — % zw: ||7N(wat|)|%;vr|)iN(ma t)” 7 (31)

where Yy (x,t) and x5 (x,t) are the Newtonian and non-
Newtonian shear rates at time ¢, and ny in the peak
Newtonian shear rate at time ¢. The shear rate difference
was used in this section due to the curved pipe geometry.
These variations are conveniently captured by the shear
rate, see equation (15). Figure 11 shows a comparison of
Ay (t) and A4 (t) over one period.

It can be seen that the velocity and shear differences
are relatively low for the majority of the period, with
peaks being seen in the regions of lowest velocity in the
oscillatory period. The average differences for the veloc-
ity and shear rate were Ayr = 0.043 and Asy7 = 0.023
respectively. These values are of similar order to those
observed for the C-Y straight pipe oscillatory case, figures
5 and 6, although direct comparisons can not be made
due to the differences in the definition of the Reynold’s
numbers for the two cases. In order to observe differences
in the velocity and shear rate profiles spatially over the
curved pipe geometry, profiles were taken across the lines
A-D shown in figure 10. Profiles were taken at the times
corresponding to the peak (Upqe = 0.47") and minimum
(Ummin = 0.16T) velocities in the curved geometry.
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Figures 12 a) - d) show the velocity profiles across
the lines A - D respectively from figure 10. The non-
Newtonian profiles show smaller peak values than the
corresponding Newtonian profiles in all cases. The non-
Newtonian profiles also exhibit the same flattening be-
haviour as was seen for the straight pipe oscillatory flow
(figures 7 and 8). The largest differences are seen in the
body of the flow, with only small absolute differences be-
ing seen near the walls of the geometry. A similar pattern
was observed throughout the period.

Figures 13 a) - d) show the shear rate profiles across
the lines A - D respectively from figure 10. The New-
tonian and non-Newtonian shear rates are similar in all
regions of the curved geometry. In general the Newto-
nian shear rate is greater than the corresponding non-
Newtonian shear rate at t = 0.47. At t = 0.14T, the
non-Newtonian shear rate is slightly higher in some re-
gions of the artery, figure 13 d). The largest differences
occur in the regions near the walls of the geometry. Sim-
ilar features were observed throughout the period.

IV. DISCUSSION

In the results presented many differences between New-
tonian and non-Newtonian flows have been observed. In
general we have seen that the predicted non-Newtonian
flows are smaller in magnitude to their corresponding
Newtonian flow in both steady and oscillatory flow. The
exception to this trend occurs in oscillatory flow for inter-
mediate & numbers. A particular example of this is seen
in the Carotid artery for both the Casson and Carreau-
Yasuda models.

For uni-directional steady flows, the differences be-
tween corresponding Newtonian and non-Newtonian pro-
files increase for decreasing Reynold’s number. The Cas-
son model exhibited the largest differences in both the
steady and oscillatory flow cases.

Differences were also seen in the oscillatory shear pro-
files in the straight pipe, even for flows where the velocity
profiles closely matched.The predicted shear for the non-
Newtonian flows was in general higher than the corre-
sponding Newtonian shear profiles. Differences occurred
across all regions of the pipe. The non-Newtonian shear
was lower than the corresponding Newtonian shear in
regions of the pipe that exhibited a peak in the appar-
ent viscosity. This phenomena occurred for both imple-
mented non-Newtonian models.

The oscillatory velocity and shear results in the
straight pipe match those reported by Artoli et al.
[38, 39]. This paper has examined these differences over a
larger parameter range and with the Casson and Carreau-
Yasuda models in order to observe more general trends.

The apparent viscosity profile in the straight pipe in all
cases exhibited a peak in the center of the pipe. The mag-
nitude of this peak varied over the time period examined,
increasing for ¢ < 0.237 and decreasing for ¢ > 0.287.
This peak narrowed for decreasing a. Satellite peaks also
occurred in all cases. The satellite peaks also varied over
the period, but were in general smaller than the central
peak.

The oscillatory flow in the curved geometry showed
similar velocity differences to the previous flows, with
the velocity profiles of the C-Y non-Newtonian flow being
flattened near the center of the geometry. The shear rates
in this geometry showed the greatest difference close to
the walls.

We note that in figures 7 and 8 the non-Newtonian
shear stress is generally greater than the Newtonian
shear, as observed elsewhere [38]. This is the case even
when the velocity gradient, deduced from the velocity
profiles in figures 7 and 8, is seen to be smaller for the
non-Newtonian case. The increased shear rate here is
due to the increased apparent viscosity. In figure 13 the
non-Newtonian shear rate is generally smaller than the
corresponding Newtonian shear rate. This is in agree-
ment with the velocity profiles presented in figure 12.

V. CONCLUSION

It is found that in the steady flow case both the Cas-
son and C-Y models show large velocity differences when
compared to corresponding Newtonian flows. It is ob-
served that in all cases, steady and oscillatory, the Casson
model produced the largest variations from Newtonian
flow. In the steady flow situation, we observed that the
parameters chosen for a particular model most affected
the flow characteristics, not the model itself. The Perk-
told et al. [34] parameters used for the Casson flow were
obtained from a blood mimicking fluid, whereas those of
Abraham et al. [41] were taken from blood. Clearly these
differences affect the non-Newtonian flow results.

Of particular interest is the observed shear profile dif-
ferences, which were apparent even for the oscillatory
Aorta case where the velocity profiles matched closely
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FIG. 12: Velocity profiles across lines a) A, b) B, ¢) C and d) D shown in figure 10. Newtonian and non-Newtonian profiles

are shown at times of t = 0.16T (Umin) and t = 0.4T (Upmaaz)-

(data not shown). Although these differences are small,
their biological implications are still uncertain. The shear
rate in the curved geometry showed only small differences
across the flow, indicating that geometry plays a large
role in determining the non-Newtonian behaviour near
the walls of a given geometry. As arterial shear rate is
implicated in atherosclerotic progression, it is important
that the shear behaviour of the fluid is modelled cor-
rectly. Thus the implementation of non-Newtonian flow
in an accurate arterial geometry and the observation of

any differences that result from using non-Newtonian and

Newtonian blood viscosity models is an important next

step. This will be the focus of future research.
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